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Constants of Motion for Several One-Dimensional
Systems and Problems Associated with Getting
their Hamiltonians

G. López,1,2 L. A. Barrera,1 Y. Garibo,1 H. Hernández,1

J. C. Salazar,1 and C. A. Vargas1

The constants of motion of the following systems are deduced: a relativistic particle
with linear dissipation; a no-relativistic particle with a time explicitly depending force; a
no-relativistic particle with a constant force and time depending mass; and a relativistic
particle under a conservative force with position depending mass. The Hamiltonian for
these systems, which is determined by getting the velocity as a function of position and
generalized linear momentum, can be found explicitly at first approximation for the first
system. The Hamiltonians for the other systems are kept implicitly in their expressions
for their constants of motion.
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1. INTRODUCTION

The constant of motion of a dynamical system, which has an equivalent inter-
pretation of the energy of the system, has received attention lately for three reasons.
First, there is an interest in studying dissipative systems (Okubo, 1981; Cantrijn,
1982). Second, there are some well-known problems with the Hamiltonian formal-
ism (Yang, 1981). Finally, there is the possibility of making a quantum mechanics
formulation based on the constant of motion concept (López, 1998, 2002). The
constant of motion concept, besides its obvious usefulness in classical mechanics
(Goldstein, 1950), can have great deal of importance in quantum mechanics and
statistical physics for system without well-defined Hamiltonian (López, 1999a).
In particular, when one studies relativistic systems with no-conservative forces or
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systems with time depending mass or systems with position depending mass, the
concept of constant of motion appears more naturally than the concept of Hamil-
tonian. In this paper we analyze four dynamical systems and find their constant
of motion. Even though, this problem seems to be simple to analyze, we want to
point out the importance of the constant of motion and the difficulty to get the
Hamiltonian for several systems. These constants of motion are selected such that
when some interaction is neglected, they are reduced to the usual concept of en-
ergy. The Hamiltonian associated to the system is deduced whenever is possible to
do that. The paper is organized as follows: first we study a relativistic system with
linear dissipation and with a constant external force. For this system, the constant
of motion is given in general, and the Hamiltonian is obtained for weak dissipation.
Then, we study a no-relativistic system with an external time explicitly depending
force, where only the constant of motion is given. In the same way, we find a
constant of motion for a no-relativistic system with a constant force and with a
time depending mass. Similarly and finally, we obtained the constant of motion of
a relativistic system with position depending mass and a force proportional to this
mass.

2. CONSTANT OF MOTION OF A RELATIVISTIC PARTICLE
WITH LINEAR DISSIPATION

The motion of a relativistic particle with rest mass “m” affected by a constant
force “ f ” and a linear dissipation force is described by the equation

d

dt

(
mv√

1 − v2/c2

)
= f − αv , (1)

where v is the velocity of the particle, c is the speed of light, and α is the parameter
which characterizes the dissipation. Equation (1) can be written as the following
autonomous dynamical system

dx

dt
= v;

dv

dt
= f

m
(1 − βv)(1 − v2/c2)3/2, (2)

where β has been defined as β = α/ f , and x is the position of the particle. A
constant of motion of this system is a function Kβ(x , v) which satisfies the equation
(López, 1999b)

v
∂Kβ

∂x
+ f

m
(1 − βv)(1 − v2/c2)3/2 ∂Kβ

∂v
= 0. (3)

The solution of Equation (3), such that for β equal to zero one gets the usual
expression for the relativistic energy,

lim
β→0

Kβ = mc2√
1 − v2/c2

− f x − mc2, (4)
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is given by

Kβ = − f x − mc2 + mc2√
1 − v2

c2




1+βv
1−β2c2 + βc

√
1−v2/c2

(β2c2−1)3/2 ln Aβ(v) if β > 1/c

1+βv
1−β2c2 + βc

√
1−v2/c2

(1−β2c2)3/2 arctan Bβ(v) if β < 1/c

1
3

[
v
c − 1

1−v/c

]
if β = 1/c

(5a)

where the functions Aβ(v) and Bβ(v) are defined as

Aβ(v)
2(β2c2 − βv) + 2βc

√
β2c2 − 1

√
1 − v2/c2

1 − βv
(5b)

and

Bβ(v) = β2c2 − βv

βc
√

1 − β2c2
√

1 − v2

c2

(5c)

At first order on the dissipation parameter, this constant of motion can be
written as

K = mc2√
1 − v2

c2

− f x − mc2 + βmc3


 v/c√

1 − v2

c2

− arctan


 v/c√

1 − v2

c2





 . (6)

Now, using the known expression relating the constant of motion and the
Lagrangian (Kobussen, 1979; Leubner, 1981; López,1996),

L = v
∫

K (x , v) dv

v2
, (7)

this Lagrangian is calculated, bringing about the expression

Lβ = − f x − mc2

+




mc2
√

1− v2

c2

β2c2−1 + βc2vm
β2c2−1 ln

[
2(1+

√
1−v2/c2)
βv

]
+ mc2Gβ (v)

4(β2c2−1) if β > 1/c

mc2
√

1− v2

c2

β2c2−1 + βc2vm
β2c2−1 ln

[
2(1+

√
1−v2/c2)
βv

]
+ mc3βQβ (v)

(1−β2c2)2 if β < 1/c

mc2

3
√

1−v2/c2

[
1 − v

c − 2v2

c2 + v
c

√
1 − v2

c2 Rβ(v)
] − mcv Rβ (v)

3 if β = 1/c

(8)
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where the functions Gβ , Qβ and Rβ are given in the appendix. The generalized
linear momentum, p = ∂L/∂v , has the following expression

pβ =




−mv

(β2c2−1)
√

1− v2

c2

+ βc2m
β2c2−1 ln


 2

(
1+

√
1− v2

c2

)
βv


 − βmc2

(β2c2−1)
√

1− v2

c2

+ A(1)
β if β > 1/c

−mv

(β2c2−1)
√

1− v2

c2

+ βc2m
β2c2−1 ln


 2

(
1+

√
1− v2

c2

)
βv


 − βmc2

(β2c2−1)
√

1− v2

c2

+ A(2)
β if β < 1/c

mc

3(1− v
c )

√
1− v2

c2

(
2v2

c2 − 2v
c − 1

)
if β = 1/c

(9)

where the functions A(1)
β and A(2)

β are given in the appendix. As one can see from
(9), it is not possible to express v explicitly as a function of pβ . Therefore, it is
not possible to know explicitly the Hamiltonian of the system. However, for weak
dissipation one can use (6) in (7) to get

L = −mc2

√
1 − v2

c2
+ f x + mc2 + βmc3 arctan

(
v/c√

1 − v2/c2

)
. (10)

The generalized linear momentum has the following expression

p = mv + βmc2√
1 − v2

c2

, (11)

and from this expression, one gets

v = −βm2c2 + p
√

p2/c2 + m2 − β2m2c2

p2/c2 + m2
. (12)

So, the Hamiltonian for weak dissipation can be written as

H = mc2(p2/c2 + m2)

gβ(p)
− f x − mc2 + βmc3�β(p), (13a)

where gβ(p) and �β(p) are defined as

gβ =
√(

p2

c2 + m2
)2

− β2m2c2 + 2βm2 p
√

p2

c2 + m2 − β2m2c2 − p2

c2

(
p2

c2 + m2 − β2m2c2
)

(13b)
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and

�β =
−βm2c2 + p

√
p2

c2 + m2 − β2m2c2

cgβ(p)

− arctan


−βm2c2 + p

√
p2

c2 + m2 − β2m2c2

cgβ(p)


 (13c)

Note that the function gβ has the following limit limβ→0 gβ(p) = m
√

p2/c2 + m2.
Thus, (13a) has the usual Hamiltonian expression for the non dissipative case as
β goes to zero.

3. CONSTANT OF MOTION FOR A TIME DEPENDING FORCE

The motion of a no-relativistic particle of mass “m” affected by a time de-
pending force, f (t), can be written as the following non-autonomous dynamical
system

dx

dt
= v;

dv

dt
= f (t)/m. (14)

A constant of motion for this system is a function K (x , v , t) such that it
satisfies the following equation

v
∂K

∂x
+ f (t)

m

∂K

∂v
+ ∂K

∂t
= 0. (15)

Solving this equation by the characteristics method (John, 1974), one gets the
general solution given by

K (x , v , t) = G(C1, C2), (16)

where G is an arbitrary function of the characteristics C1 and C2 which have the
following expressions

C1 = v − 1

m

∫
f (t) dt , (17a)

and

C2 = x − vt + t

m

∫
f (t) dt − 1

m

∫ (∫ t

f (s) ds

)
dt. (17b)

Let us choose f (t) of the form

f (t) = fo[1 + εg(t)], (18)

where g(t) is an arbitrary nonsingular function, and ε and fo are parameters. Note
that limε→0 f (t) = fo, and in this limit the usual constant of motion is the energy,
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Ko = limε→0 K = mv2/2 − fox . In order to get this energy expression from our
characteristics, one needs in (16) the following functionality limε→0 G(C1, C2) =
(mC2

1/2 − foC2)ε=0. So, one can choose this functionality in (16) for ε �= 0, having
the constant of motion given by

K = m

2
[v − h1(t)]2 − fo[x − vt + th1(t) − h2(t)], (19)

where h1 and h2 have been defined as

h1(t) = 1

m

∫
f (t) dt , (20a)

and

h2(t) =
∫

h1(t) dt. (20b)

The expression (19) can also be written as

K = Ko(x , v) + Vε(v , t), (21a)

where Ko and Vε have been defined as

Ko(x , v) = 1

2
mv2 − fox , (21b)

and

Vε = −mvh1(t) + fovt + 1

2
mh2

1(t) − foth1(t) + foh2(t). (21c)

It is not difficult to see that the following limit is satisfied

lim
ε→0

Vε(v , t) = 0. (21d)

In particular, for a periodic function,

g(t) = sin(	t), (22)

one gets

K = Ko + ε fov

	
cos(	t) + f 2

o ε2

2m	2
cos2(	t) − ε f 2

o

mω2
sin(	t). (23)

Since the expression (14) represents a non autonomous system, the possible as-
sociated Hamiltonian can not be a constant of motion, and the expression (7) can
not be used to calculate the Lagrangian of the system, therefore, its Hamiltonian
(López and Hernández, 1989). Naively, one can consider (14) as a Hamiltonian
system and H = p2/2m − f (t)x/m as its associated Hamiltonian (p = mv), and
L = mv2/2 + f (t)x/m as its associated Lagrangian. However, this procedure is
difficult to justify and is not free from ambiguities.
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4. CONSTANT OF MOTION OF A TIME DEPENDING MASS SYSTEM

The motion of a particle with a time depending mass and affected by a constant
force can be described by the following no-autonomous dynamical system

dx

dt
= v;

dv

dt
= f

m
− ṁ

m
v , (24)

where f represents the constant force, m = m(t) is the mass of the system, and
ṁ is its time differentiation (this type of systems appear for example in rockets
or missiles motion studies). A constant of motion for this system is a function
K (x , v , t) which satisfies the equation

v
∂K

∂x
+

[
f

m
− ṁ

m
v

]
∂K

∂v
+ ∂K

∂t
= 0. (25)

Solving (25) by the characteristics method, the general solution is gotten as

K (x , v , t) = G(C1, C2), (26)

where G is an arbitrary function of the characteristics C1 and C2 which are defined
as

C1 = mv − f t (27a)

and

C2 = x − mv
∫

dt

m(t)
+ f

[
t
∫

dt

m(t)
−

∫
t dt

m(t)

]
. (27b)

If one assumes that the mass is constant, m(t) = mo, the characteristic curves would
be given by C1 = mv − f t and C2 = x − vt − f t2/2m. So, the functionality G
which brings about the usual constant of motion (energy) would be given by G =
C2

1/2mo − f C2 = mv2/2 − f x . Therefore, for the case where the mass depends
explicitly on time,

m(t) = mogε(t), (28)

such that limε→0 gε = 1, one chooses the following functionality

G(C1, C2) = 1

2mo
C2

1 − f C2 (29)

which brings about the constant of motion of the form

Kε(x , v , t) = Koε(x , v , t) + Wε(v , t), (30a)

where Koε and Wε are given by

Koε = mog2
ε

2
v2 − f x (30b)
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and

Wε = −gε(t) f vt + f 2t2

2mo
+ gε(t) f v�1(t) − f 2

mo
�2(t). (30c)

The functions �1(t) and �2(t) have been defined as

�1(t) =
∫

dt

gε(t)
(30d)

and

�2(t) = t�1(t) −
∫

t dt

gε(t)
. (30e)

The functions Koε and Wε have the following limits

lim
ε→0

Koε = 1

2
mov2 − f x (31a)

and

lim
ε→0

Wε = 0. (31b)

About these results, one has the same observation made on previous systems, that
is, the constant of motion is a well-defined concept, in contrast, the Lagrangian
and the Hamiltonian are no free from ambiguities.

5. CONSTANT OF MOTION OF A POSITION
DEPENDING MASS SYSTEM

The motion of a relativistic particle of position depending mass, m(x), and
affected by a conservative force f (x) is given by the equation

d

dt


 m(x)v√

1 − v2

c2


 = f (x), (32)

where v is the velocity of the particle. This equation can be written as the following
autonomous system

dx

dt
= v (33a)

and

dv

dt
= f (x)

m

(
1 − v2

c2

)3/2

−
(

1 − v2

c2

)
v2mx

m
, (33b)

where mx is the differentiation of the mass m with respect to the position (this type
of systems may be important for mass particle oscillations along its trajectory,
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like neutrino mass oscillation problem). A constant of motion for this system is a
function K (x , v) satisfying the equation

v
∂K

∂x
+

[(
1 − v2

c2

)3/2
f (x)

m
−

(
1 − v2

c2

)
v2mx

m

]
∂K

∂v
= 0. (34)

The general solution of (34) is given by

K (x , v) = G(C), (35)

where C is the characteristic curve obtained from the solution of the following
equation

dx

v
= dv(

1 − v2

c2

)3/2
f (x)
m −

(
1 − v2

c2

)
v2mx

m

. (36)

From this expression, one can clearly see that this equation can be integrated for
special cases only. For example, assuming f (x) of the form

f (x) = −αmx c2, (37)

where α is a constant. Using (37) in (36) and the variable ξ =
√

1 − v2/c2, the
integration can be done, getting the following characteristic curve (in terms of the
variable v)

Cα = m

√
v2/c2 + α

√
1 − v2/c2

1 − v2/c2

(√
α2 + 4 − α + 2

√
1 − v2/c2

√
α2 + 4 + α − 2

√
1 − v2/c2

) α

2
√

α2+4

.

(38)

Note, from (7), that α = 0 represents the case of a relativistic free particle with
position depending mass, and from (38) one gets the following limit

lim
α→0

Cα = m(x) v

c
√

1 − v2/c2
. (39)

Thus, one can choose G as G(Cα) = c2C2
α/2mo, where mo is the value of m at

x = 0. So, the constant of motion is given by

Kα =
(

m2(x)

2mo

)
v2 + αc2

√
1 − v2/c2

1 − v2/c2

(√
α2 + 4 − α + 2

√
1 − v2/c2

√
α2 + 4 + α − 2

√
1 − v2/c2

) α√
α2+4

.

(40)
In addition, if m(x) is chosen of the form

m(x) = mogε(x), (41)
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where limε→0 gε(x) = 1, one would have the following expected limit

lim
α→0
c→∞
ε→0

Kα = 1

2
mov2. (42)

For example, let m(x) be of the form

m(x) = mo(1 + ε sin (kx)). (43)

Then, the constant of motion is given by

Kα(x , v) = moc2

2
(1 + ε sin (kx))2 Fα

(v

c

)
, (44)

where the function Fα is defined as

Fα

(v

c

)
= v2/c2 + α

√
1 − v2/c2

1 − v2/c2

(√
α2 + 4 − α + 2

√
1 − v2/c2

√
α2 + 4 + α − 2

√
1 − v2/c2

) α√
α2+4

.

(45)

Given the initial condition (xo, vo), this constant is determined, and the tra-
jectory in the space (x , v) can be traced. On the other hand, for the system (33)
and for the particular case seen above, the expression (7) can be used, in principle,
to obtain the Lagrangian of the system. However, the integration can not be done
in general. Even more, if this Lagrangian is explicitly known and the generalized
linear momentum is calculated, one can not know v = v(x , p), in general. Thus,
the Hamiltonian of this system can not be known explicitly.

6. CONCLUSIONS

We have given constants of motion for several one-dimensional systems.
These constants of motion were chosen such that they can have the usual energy
expression when the parameter which characterizes the no-conservative interaction
goes to zero. For a relativistic particle with linear dissipation, its constant of motion
was deduced in general, but its Hamiltonian was explicitly given only for weak
dissipation. The problem to get the Hamiltonian was due, in general, to the fact
that it is not possible to obtain the velocity explicitly as a function of the linear
momentum and position from the expression p = p(x , v). For a no-relativistic
time depending system, for a no-relativistic time depending mass system affected
by a constant force and for a mass position depending system affected by a constant
force, only the constants of motion were given. The problem of getting their
Hamiltonians is essentially the same as the first system.
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APPENDIX

The function Gβ(v) is given by

Gβ(v) = −2
√

2 + 2βc v arctan

(
v
√

1 + βc

c
√

2

)
+ 4βcv ln

(
v/c

βv − 1

)

− 4c ln

(
2βc(−1 + βc +

√
β2c2 − 1

√
1 − v2/c2

1 − βv

)

−
√

2 + 2βc v H+
β (v) +

√
2 + 2βc vh−

β (v), (A1)

where the function with hs
β with s = ±1 is given by (γ −1 =

√
1 − v2/c2)

hs
β (v) = ln

[
4v

√
(βc)2 − 1 + s2βc2√2 + 2βcγ −1 + 2c

√
2 + 2βc(s

√
βc)2 − 1 − sγ −1)

(βc − 1)
√

β2c2 − 1(sc
√

2 + 2βc + v + βcv)

]
.

(A2)

The function Qβ(v) is given by

Qβ(v) =
√

1 − (βc)2 arctan

(
βc − v/c√

1 − (βc)2γ −1

)

+ βcv
√

1 − (βc)2 ln




2

(
βc−v/c
1−(βc)2 + 1

γ
√

1−(βc)2

)
1 − βv




+ (1 − β2c2) ln

(
2c(1 − β2c2 + (1 − β2c2)

√
1 − v2/c2

v(1 − β2c2)3/2

)
.

(A3)

The function Rβ(v) is given by

Rβ(v) = ln

(
2c(1 + γ −1)

v

)
. (A4)

The function A(1)
β is given by

A(1)
β (v) = mc3v

β2c2 − 1

{
β

v
− β2

βv − 1
− 1 + βc

2c2
(
1 − (1+βc)v2

2c2

)
+ (β2c2 − 1) f1(v)

g1(v)(−√
2 c

√
1 + βc + v + βcv)2
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− (β2c2 − 1) f2(v)

g2(v)(
√

2 c
√

1 + βc + v + βcv)2
− f3(v)

g3(v)(1 − βv)2

+ 1

v2
ln

(
2( − βc + β2c2) + 2βc

√
(βc)2 − 1 γ −1

1 − βv

)}
(B1)

where f1, f2, f3, g1, g2 and g3 are defined as

f1(v) = 2(1 + βc)(
√

2 c
√

1 + βc − 2v)

2(βc − 1)
+ 4

βc − 1
(−

√
2 c

√
1 + βc + v + βcv)

+ 2
√

2
√

1 + βc v(−√
2 c

√
1 + βc + v + βcv)

c
√

(βc)2 − 1 γ −1

+ 2
√

2c(1 + βc)3/2 γ −1√
β2c2 − 1

, (b1)

f2(v) = −2(1 + βc) (
√

2 c
√

1 + βc + 2v)

2(βc − 1)
+ 4

βc − 1
(
√

2c
√

1 + βc + v + βcv)

− 2
√

2
√

1 + βc v(−√
2 c

√
1 + βc + v + βcv)

c
√

(βc)2 − 1 γ −1

− 2
√

2c(1 + βc)3/2 γ −1√
β2c2 − 1

, (b2)

f3(v) = −2βγ v

c

√
β2c2 − 1 (1 − βv) + β[2(−βc + β2c2)

+ 2βc
√

(βc)2 − 1 γ 1], (b3)

g1(v) = 2
√

2 c(βc − 1)
√

1 + βc

[
− 2(

√
2 c

√
1 + βc − 2v)

(βc − 1)(−√
2 c

√
1 + βc + v + βvc)

− 2
√

2 c
√

1 + βc γ −1√
(βc)2 − 1(−√

2 c
√

1 + βc + v + βcv)

]
, (b4)

g2(v) = 2
√

2 c(βc − 1)
√

1 + βc

[
2(

√
2 c

√
1 + βc − 2v)

(βc − 1)(
√

2 c
√

1 + βc + v + βvc)

+ 2
√

2 c
√

1 + βc γ −1√
(βc)2 − 1(

√
2 c

√
1 + βc + v + βcv)

]
, (b5)
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and

g3(v) = v[2(−βc + β2c2) + 2βc
√

(βc)2 − 1 γ −1]. (b6)

The function A(2)
β (v) is given by

A(2)
β (v) = mc2β

(1 − β2c2)3/2


βc ln




2(βc−v/c)
1−β2c2 + 2

γ
√

1−β2c2

1 − βv




−
√

1 − β2c2 ln

(
2c(1 − β2c2 + (1 − β2c2) γ −1

v(1 − β2c2)3/2

)]
. (B2)
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